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Abstract 

Damage detection methods have been considerably increased over the past few decades. A crack in a structural 

member introduces local flexibility that would affect vibration response of the structure. This property may be 

used to detect existence of a crack together with its location and depth in the structural member. The presence of 

damage leads to changes in some of the lower natural frequencies and mode shapes. Damage detection is one of 

the important aspects in structural engineering both for safety reasons and because of economic benefits that can 

result. This technique has been used in the present investigation for crack detection. Here the crack is transverse 

surface crack. The crack is analyzed using fuzzy logic system and finite element analysis. The fuzzy controller 

uses the hybrid membership functions (combination of triangular, trapezoidal and Gaussian) as input and 

trapezoidal membership functions as output. The input parameters to the fuzzy controller are the first three 

natural frequencies. The output parameters of the fuzzy controller are the relative crack depth and relative crack 

location. Finite element analysis has been done for modeling the cracked cantilever beam. By using Several 

fuzzy rules the results obtained for crack depth and crack location in the Matlab Simulink environment and have 

been compared with the results obtained from finite element analysis. It is observed that the fuzzy controller can 

predict the depths and locations accurately close to the finite element analysis. Finally a deviation of the results 

obtained by comparing the finite element analysis results and fuzzy controller result. 

 

Key words: Damage, vibration, natural frequency, fuzzy logic, membership function, fuzzy controller. 
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INTRODUCTION 

 
Many researchers have been carried out in an attempt to find methods for non-destructive crack detection in structural 
members. Vibration-based methods have been proved as a fast and inexpensive means for crack identification. A crack 
in a structure induces a local flexibility which affects the dynamic behavior of the whole structure to a considerable 
degree. It results in reduction of natural frequencies and changes in mode shapes. An analysis of these changes makes 
it possible to determine the position and depth of cracks. Most of the researches used in their studies are open crack 
models, that is, they assume that a crack remains always open during vibration. The assumption of an open crack leads 
to a constant shift of natural frequencies of vibration. Various studies investigated over the last decades, however, indicate that 

a real fatigue crack opens and closes during vibration. It exhibits non-linear behavior due to the variation of the stiffness which occurs 
during the response cycle. As a result, a breathing crack gives rise to natural frequencies falling between those corres- ponding to the 
open and closed states. Therefore, if an always open crack is assumed, the decrease in experimental natural frequencies will lead to 
an under- estimation of the crack depth. Harish and Parhi, 2009 have performed analytical studies on fuzzy inference system for 
detection of crack location and crack depth of a cracked cantilever beam structure using six input parameters to the fuzzy membership 
functions. The six input parameters are percentage deviation of first three natural frequencies and first three mode shapes of the 
cantilever beam.  

 
 

 

Experimental setup has been developed for verifying the 
robustness of the developed fuzzy inference system. The 
developed fuzzy inference system can predict the 
location and depth of the crack in a close proximity to the 
real results. (Mohammad and Vakil, 2008) have proposed 
a method in which damage in a cracked structure was 
analyzed using genetic algorithm technique. For modeling 
the cracked-beam structure an analytical model of a 
cracked cantilever beam was utilized and natural 
frequencies were obtained through numerical methods. A 
genetic algorithm is utilized to monitor the possible 
changes in the natural frequencies of the structure. The 
identification of the crack location 

at right end and has uniform structure with a constant rectangular 
cross-section of 800 × 50 × 6 mm as shown in Figure 1. The Euler- 
Bernoulli beam model is assumed for the finite element formulation. 
The crack in this particular case is assumed to be an open crack 
and the damping is not being considered in this theory. Both single 
and double edged crack are considered for the formulation. 

 

Governing equation of free vibration 
 

The free bending vibration of an Euler-Bernoulli beam of a constant 
rectangular cross section is given by the following differential 
equation as given in: 

 

EI 
d 

4 
y 
 m

2 
y  0 

 
 

and depth in the cantilever beam was formulated as an 
optimization  problem.  Norhisham  et  al.  (2007)  applied dx 4 i 

(1) 

Artificial Neural Network for damage detection. In his 
investigation an ANN model was created by applying 
Rosenblueth‟s point estimate method verified by Monte 
Carlo simulation, the statistics of the stiffness parameters 

where „m‟ is the mass of the beam per unit length (kg/m), „mi‟ is the 
natural frequency of the ith mode (rad/s), E is the modulus of 
elasticity (N/m2) and I is the moment of inertia (m4). 

were estimated. The probability of damage existence 
(PDE) was then calculated based on the probability 
density function of the existence of undamaged and 

 
By defining 

m
2

 


4 

i 

equation is rearranged as a fourth-order 
EI 

damaged states. The developed approach was applied to 
detect simulated damage in a numerical steel portal 
frame model and also in a laboratory tested concrete 
slab. The effects of using different severity levels and 
noise levels on the damage detection results are dis- 
cussed. Saridakis (2008) applied neural networks, 
genetic algorithms and fuzzy logic for the identification of 
cracks in shafts by using coupled response 
measurements. In this research the dynamic behavior of 

differential equation as follows: 

 
d 

4 
y 
 

4 
y  0 

dx 
4

 

The general solution to the equation is: 
 

y  A cos ix  Bsin ix  C cosh ix  D sinh ix 

 

 

(2) 

 
 
 

(3) 

a shaft with two transverse cracks characterized by three 
measures: position, depth and relative angle. Both cracks 
were considered to lie along arbitrary angular positions 
with respect to the longitudinal axis of the shaft and at 
some distance from the clamped end. A local compliance 

where A, B, C, D are constants and „Li‟ is a frequency parameter. 
Adopting Hermitian shape functions, the stiffness matrix of the two- 
noded beam element without a crack is obtained using the standard 
integration based on the variation in flexural rigidity. 
The element stiffness matrix of the un cracked beam is given as: 
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matrix of two degrees of freedom (bending in both the 
horizontal and the vertical planes) was used to model 
each crack. Ganguli (2001) has developed a fuzzy logic 

K 
e
  ∫ [B(x)]

T
 

 

EI[B(x)]dx 
 

(4) 

system (FLS) for ground based health monitoring of a 
helicopter rotor blade. Structural damage is modeled as a 
loss of stiffness at the damaged location that can result 
from delamination. The fuzzy system is trained by a batch 

[B(x)]  {H1(x)H 2 (x)H3 (x)H 4 (x)} 

where are the Hermitian shape functions defined as: 

(5) 

least squares algorithm based on desired input–output 
data so that the trained fuzzy system can behave like the 
training data. Parhi and Amiya (2009) have presented 
comprehensive review of methodologies in the domain of 

H1(x)  1 
3x 

2
 

l2 
 

2x 
3 

l3 

 
(6a) 

dynamic vibration of cracked structures using energy 
methods, finite element methods, fuzzy inference 
techniques, neural networks, neuro-fuzzy adaptive 
techniques and genetic algorithms for identifying the 

H 2 (x)  x 
2x 

2 

l 
 

x 3 

l 2 

 
(6b) 

intensity and location of cracks. 

 
FINITE ELEMENT FORMULATION 

H3 (x) 
3x 

2
 

l2 
 

2x 
3 

l3 

 
(6c) 

 
Theory H (x)   

x
2 
 

x
3
 

 
  

 

(6d) 
4 

The beam with a transverse edge crack is clamped at left end, free l l2 
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Figure 1. Geometry of Cantilever beam. 

 

Assuming the beam rigidity EI is constant and is given by EI0 within 
the element, and then the element stiffness is Equation (6): 12E(I     I   ) 

J  
3 { 
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Here, K 
e 

Stiffness matrix of the cracked element, K 22  | c  2lc |
 1  2| | 

(9d) 

K 
e
  Element stiffness matrix, K c  

matrix due to the crack. 

Reduction in stiffness 3 | 2 

|⎝ 
| | 

⎝  ⎠  |] 

 
According to Peng et al. (2007), the matrix [Kc] is: 12E(I 

J 

 I  ) 3 
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Here, lc=1.5W, L=Total length of the beam, L1=Distance between 

BW
3
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beam with crack. It is supposed that the crack does not affect the 
mass distribution of the beam. Therefore, the consistent mass 
matrix of the beam element can be formulated directly as: 

 1 

set A, where by µA(x) a large class of function can be 
taken. Reasonable functions are often piecewise linear 
function, such as triangular or trapezoidal functions. The 
value for the membership function can be taken in the 

M 
e
  ∫A[H(x)]

T
 H(x)dx 

0 

(10) 
interval [0, 1]. When the functions are nonlinear the 
Gaussian membership function will be taken for the 
smooth operation. 
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(11) 

 
Fuzzy logic 

In Crisp logic, the truth values acquired by proposition or 
predicates are 2-valued, namely True, False which may 
be treated numerically equivalent to (0, 1). However in 

The natural frequency then can be calculated from the relation: fuzzy logic, truth values are multivalued such as 
absolutely false, partly true, absolutely false, and very 

[
2 M K]{q}  0 

where: q=displacement vector of the beam. 

(12) true and so on and are numerically equivalent to 0-1. 

 
Fuzzy linguistic variables 

 
ANALYSIS OF FUZZY LOGIC SYSTEM FOR CRACK 
DETECTION 

 
Fuzzy logic is a tool for Embedding Human structured 
knowledge (Experience, Expertise and Heuristic). P. L. 
Zadeh says: “Fuzzy logic may be viewed as a bridge over 
the excessively wide gap between the precision of 
classical crisp logic and the imprecision of both the real 
world and its human interpretation”. Fuzzy logic attempts 
to model the way of reasoning that goes in the human 
brain. Almost all of human experience is stored in the 
form of the If-Then rules. Human reasoning is pervasively 
approximate, non-quantitative, linguistic and dispose- 
tional. Fuzzy logic can be explained in the following 
steps. 

 
Fuzzy set 

 
A fuzzy set, as the name implies, is a set without a crisp 
boundary. That is the transition from “belongs to a set” to 
not belong to a set is gradual and this smooth transition is 
characterized by membership functions that give fuzzy 
sets flexibility in modeling commonly used linguistic 
expressions. A membership function assigns to each 
element in the set under consideration a membership 
grade, which is a value in the interval [0, 1]. 

 

Membership function 

 
The basic structure of a fuzzy interface system consists 
of three components: a rule base, which contains a 
selection of fuzzy rules, a database which defines the 

membership functions used in the fuzzy rules and a 
reasoning mechanism, which performs the interface 
procedure. The membership function µA(x) describes the 
membership of the elements x of the base set X in fuzzy 

M 
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Just like an algebraic variable takes numbers as 
values, a linguistic variable takes words or sentences 
as values. The set of values that it can take is called 
its term set. Each value in the term set is a fuzzy 
variable defined over a base variable. The base 
variable defines the universe of discourse for all the 
fuzzy variables in short. In short the hierarchy is as 
follows: Linguistic variable ‹ Fuzzy variable ‹ Base 
variable. 

 
Fuzzy if-then rule 

A fuzzy if-then rule (also known as fuzzy rule, fuzzy 
implication or fuzzy conditional statement) assumes the 
form “if x is A then y is B”. Where A and B are linguistic 
values defined by fuzzy sets on universes of discourse x 
and y respectively. Often “x is A” is called the antecedent 
or premise, while “y is B” is called the consequence or 
conclusion (Some of the linguistic terms used are shown 
in Table 1). 

 
Fuzzy mechanism used for crack detection 

The fuzzy controller (as shown in Figure 2) has been 
developed where there are 3 inputs and 2 outputs 
parameter. The natural linguistic representations for the 
input are as follows: 

Relative first natural frequency = “FNF” 
Relative second natural frequency = “SNF” 
Relative third natural frequency = “TNF” 
The natural linguistic term used for the outputs are 
Relative crack depth = “RCD” 
Relative crack length= “RCL” 

Based on the above fuzzy subset the fuzzy rules are 
defined in a general form as follows: 

If (FNF is FNFi and SNF is SNFj and TNF is TNFk) then 
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respectively 

respectively. 

respectively. 

respectively. 

respectively. 

 

 
Table 1. Linguistic term used for membership functions. 

 
 

Name of the membership 
function 

Linguistic 
terms 

Description and range of the linguistic terms 
 

Low ranges of relative natural frequency for first mode of vibration 
in ascending order respectively. 

 
Medium ranges of relative natural frequency for first mode of 
vibration in ascending order respectively. 

 
Higher ranges of relative natural frequency for first mode of 
vibration in ascending order respectively 

 
Low ranges of relative natural frequency for second mode of 
vibration in ascending order respectively. 

 
Medium ranges of relative natural frequency for second mode of 
vibration in ascending order respectively. 

 
Higher ranges of relative natural frequency for first mode of 
vibration in ascending order respectively 

 
Low ranges of relative natural frequency for second mode of 
vibration in ascending order respectively 

 
Medium ranges of relative natural frequency for second mode of 
vibration in ascending order respectively 

 
Higher ranges of relative natural frequency for first mode of 
vibration in ascending order respectively 

 

SD1,SD2,SD3  rcd1to3   
Small ranges of relative crack depth in ascending order 

MD1,MD2,MD3  rcd4to6   
Medium ranges of relative crack depth in ascending order 

LD1,LD2,LD3 rcd7to9 
Larger ranges of relative crack depth in ascending order 

SL1,SL2,SL3 rcl1to3 
Small ranges of relative crack location in ascending order 

ML1,ML2,ML3  rcl4to6  
Medium ranges of relative crack location in ascending order 

BL1,BL2,BL3 rcl7to9 Bigger ranges of relative crack location in ascending order. 
 

 

(CD is CDijk and CL is CLijk) 
 
Where i= 1to 9, j=1 to 9, k=1 to 9 (13) 

 
Because of “FNF”, “SNF”, “TNF” have 9 membership 

functions each. 
From the above expression (13), two set of rules can be 
written: 

M1F1,M1F2,M1F3 fnf4,6 

H1F1,H1F2,H1F3 fnf7,9 

M2F1,M2F2,M2F3 snf4,6 

M3F1,M3F2,M3F3 tnf4,6 

L1F1,L1F2,L1F3 fnf1to3 

L2F1.L2F2,L2F3 snf1to3 

H2F1,H2F2,H2F3 snf7to9 

L3F1,L3F2,L3F3 tnf1to3 

H1F1,H1F2,H1F3 tnf7to9 
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If (FNF is FNFi and SNF is SNFj and TNF is TNFk) then 
CD is CDijk (14a) 

 
If (FNF is FNFi and SNF is SNFj and TNF is TNFk) then 
CL is CLijk (14b) 

 

According to the usual Fuzzy logic control method  
(Harish and Parhi, 2008), a factor Wijk is defined for the 
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Crisp Values 

 

 

 
 

Figure 2. Fuzzy controller. 

 

 

rules as follows: 

Wijk=µfnfi (freqi) Λ µsnfj (freqj) Λ µtnfi (freqk) 

where freqi, freqj and freqk are the first, second and third 
natural frequency of the cantilever beam with crack 
respectively; by applyng composition rule of interference 
(Harish and Parhi, 2008) the membership values of the 
relative crack location and relative crack depth 
(location)CL: 

µrclijk (location) = Wijk Λ µrclijk (location) length CL 

As: 

µrclijk (depth) = Wijk Λ µrclijk (depth) depth CD 
 
The overall conclusion by combining the output of all the 
fuzzy can be written as follows: 

 

µrclijk (location) = µrcl111 (location) V.….V µrclijk 
(location) 

 
V.V µrcl9 9 9 (location) (15a) 

 

µrclijk (location) = µrcl111 (depth) V V µrclijk (depth) 
 
V….V µrcl9 9 9 (depth) (15b) 

 
The crisp values of relative crack location and relative 
crack depth are computed using the center of gravity 
method (Das et al., 2008) as: 

 
∫ location.rcl(location).d(location) 

 

Relative crack location=rcl= ∫ rcl(location).d(location)
 

(16a) 

 

∫ depth.rcd (depth).d(depth) 
 

Relative crack depth=rcd= 
∫ rcd 

(depth).d(depth)
 

(16b) 

 
O 

U 

T 

P 

Fuzzy Controller Fuzzifier 

 
fnf 

 
I 

snf   N 

P 

tnf 

Defuzzifier 

rcl 

rcd 
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WHY WE USE FUZZY LOGIC 
 
(i) Provides an easy to use interface for applying modern 
fuzzy logic techniques. 
(ii) Easily integrated into Model-Based design through 
the use of the Simulink blocks. 
(iii) Provides the ability to use fuzzy logic when 
appropriate with other control techniques. 
(iv) Provides the ability to generate code for various uses. 
(v) Supplies a fuzzy inference engine that can execute 
the fuzzy system as a stand-alone application. 

 
DISCUSSION AND CONCLUSION 

In this paper a cantilever beam with a single crack has 
been taken into consideration. The change in local 
flexibility due to the presence of the crack is used to 
calculate the change in the natural frequencies of the 
cantilever beam. For this theoretical analysis has been 
used. 

Finite element method is used to find out the natural 
frequencies of the faulty cantilever beam. A fuzzy 
controller has been designed using trapezoidal, 
Gaussian as well as triangular membership function to 
find out the crack depth and crack location (as shown in 
Figure 3). Table 1 presents the linguistic terms used for 
membership functions and the range of the linguistic 
terms. For the fuzzy controller some fuzzy rules have 
been formulated, which is described in Table 2. The 
operation of fuzzy controller has been shown through an 
example as shown in Figure: 4. Table 3 represents the 
results of fuzzy logic controller as well as the deviation in 
result. 

The above system is modeled and simulated in the 
Matlab Simulink environment for the valediction of the 
result which is shown above. It has been observed that 
the applied fuzzy controllers can predict the relative 
crack location, relative crack depth of the beam with a 
considerably less amount of computational time as 
compared to Finite element analysis. 
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L2F1 L2F2 L2F3 M2F1 M2F2 M2F3 H2F1 H2F2 H2F3 

1 

0.5 

 
 
 

 

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 

Figure 3(a). Hybrid Membership functions for relative natural frequency for 1st mode of vibration. 

 
 
 

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1 

Figure 3(b). Hybrid Membership functions for relative natural frequency for 2nd mode of vibration. 

 
 
 
 
 
 
 
 
 

0. 
 
 
 
 
 

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1 

Figure 3(c). Hybrid Membership functions for relative natural frequency for 3rd mode of vibration. 
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Figure 3(d). Trapezoidal Membership functions for relative crack location. 

 

 

0.1 0.15 0.2 0.25 0.3 0.35 0.4 

Figure 3(e). Trapezoidal Membership functions for relative crack depth. 
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Figure 4. Rule No. 6 of Table 2 is activated. 

0.208 Output 
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Table 3. Example of Input data and results of fuzzy controller. 
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natural 

 
second natural 

 
third natural 

 
crack depth 

 
crack 
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Relative first Relative Relative 
Relative 

Relative Fuzzy controller 

relative crack 

Fuzzy controller 

relative crack 

% Deviation in 
result 

% Deviation in 
result 

 frequency frequency frequency  location depth location (crack depth) (crack location) 

1 0.870 0.914 0.985 0.225 0.135 0.216 0.139 4 2.96 

2 0.878 0.945 0.992 0.312 0.257 0.307 0.265 1.602 3.12 

3 0.885 0.969 0.995 0.282 0.220 0.273 0.230 3.19 4.54 

4 0.904 0.973 0.974 0.265 0.235 0.257 0.229 3.01 2.55 

5 0.915 0.981 0.979 0.230 0.270 0.226 0.267 1.73 1.11 

6 0.936 0.991 0.955 0.216 0.3125 0.208 0.302 3.7 3.36 

7 0.947 0.995 0.969 0.2 0.375 0.21 0.391 5 4.26 

8 0.918 0.929 0.974 0.283 0.4 0.263 0.388 7.06 3 

9 0.932 0.955 0.995 0.166 0.237 0.162 0.212 2.4 10.54 

10 0.976 0.980 0.929 0.15 0.268 0.161 0.252 7.33 5.97 

 


